Influence of thermoplastic starch plasticized with biodiesel glycerol on thermal properties of pp blends

Derval dos Santos Rosa · Marcelo Augusto Gonçalves Bardi · Luci Diva Brocardo Machado · Djalma B. Dias · Leonardo Gondin Andrade e Silva · Yasko Kodama

Received: 23 October 2008/Accepted: 3 March 2009/Published online: 23 June 2009 © Akadémiai Kiadó, Budapest, Hungary 2009

Abstract Plastics have been used in short-life products, which have presented harmful consequences for the nature, because of the low degradation rate reached by the most common polyolefins. This work evaluates the mechanical and thermal properties of pure iPP, plasticized starch (TPS) with biodiesel (TPS_{Bio}) or commercial (TPS_{Com}) glycerols, and their blends (iPP/TPS_{Plas}). The addition of TPS_{Plas} caused an increasing on the cristallinity of iPP, mainly for the compositions 90/10 and 80/20, probably due to morphological alterations such as crosslinking, that may have modified the molecular arrangement of the iPP in the presence of glycerol.

Keywords Biodegradation · Biodiesel · Blends · Polypropylene · Thermoplastic starch

Introduction

The increase of the consumption of polymers by the industry has become really noticeable since the century 20

D. dos Santos Rosa (⊠) · M. A. G. Bardi Laboratório de Polímeros Biodegradáveis e Soluções Ambientais, Programa de Pós-Graduação Stricto Sensu em Engenharia e Ciência dos Materiais (PPG-ECM), Universidade São Francisco, Rua Alexandre Rodrigues Barbosa, no 45, Centro, CEP 13251-900 Itatiba, SP, Brazil e-mail: derval.rosa@saofrancisco.edu.br; dervalrosa@yahoo.com.br

L. D. B. Machado \cdot D. B. Dias \cdot L. G. Andrade e Silva \cdot Y. Kodama

Centro de Tecnologia das Radiações, Instituto de Pesquisas Energéticas e Nucleares—IPEN-CNEN/SP, Cidade Universitária, Av. Prof. Lineu Prestes 2242, CEP 05508-000 São Paulo, SP, Brazil [1–7]. As described by Albertsson [1], the focus of the early 1930s was exactly to obtain very much better materials in sense of lifetime. Although this choice has caused harmful consequences for the environment, they continue being widely applied in low lifetime materials, such as packages, and incorrectly disposed in holes in the ground on the peripheries of cities [2].

Scott [2] comments that there is an increasing recognition that society should treat waste as a resource to be re-utilized in products to be useful for themselves rather than just burying them. Some of the suggested processes are the mechanical recycling, energy recycling and biocycling, where the last one is the most complete solution to the problem of plastics wastes [2, 3, 5–7].

The first environmental approach for the problem was taken in the early 1970s, when the oil crisis took place, initiating the development of materials filled with renewable content, such as the starch [1], which were designed to degrade upon disposal by the action of living organisms (biodegradation) [4, 5].

Some authors [2, 8–20] describe the development of starch-based materials, where starch is blends with traditional polyolefins (e.g., polyethylene, polypropylene). It's known that the polyolefins are not naturally biodegradable, but they can be more sensitive to heat or light in the presence of oxygen after use to give bioassimilable products. And that is the role that starch takes in the blends, which is responsible by starting the hydro-biodegradation of the samples, i.e., when the assimilation is preceded by hydrolysis [2].

In order to access a plastic character to starch, the incorporation of plasticizing agents, such as glycerol, formamide, acetamide and urea, is evaluated by some authors [8, 9, 14, 16, 21–26]. Ma and Yu [22] observed the oxygen present in C–O–H and C–O–C groups in starch

could form hydrogen bonds with the plasticizers and the properties of the thermoplastic starch (TPS) mainly relies on the hydrogen bond-forming abilities between plasticizer and the starch matrix.

The plasticizer glycerol is synthetically produced at an industrial scale from epichlorohydrin by saponification or transesterification [27, 28], where soap-making and biodiesel production are the respective examples. Glycerol is a 10% by-product of biodiesel production, since 10 lb. of biodiesel produces 1 lb. of glycerol [29–32], but this co-product has not been considered by the cosmetic and other industries to be applied as a substitute to the synthetic one. So, crude glycerol is rapidly becoming a 'waste product' with a disposal environmental cost attributed to it [29, 32–34].

The incorporation of TPS to the polyolefins can cause meaningful alterations to the properties of the former, specially when high concentrations of starch, in mass, is used (superior to 40% [12, 14]). The thermal and mechanical characterizations are two complete techniques to evaluate the conformation of the polymeric system and their behavior under stress and temperature as well [20].

Rosa et al. [9] evaluated mixtures of high-density polyethylene (HDPE) and polypropylene (PP) with thermoplastic starch (TPS). It was verified that the incorporation of TPS reduced the melting flow index (MFI) of PP and increased of HDPE and HDE/PP blends. A decreasing of the mechanical properties of all formulations developed was observed, what can be justified by a phase separation between the polyolefins and TPS.

Rodrigues et al. [11] evaluated the natural weathering of low-density polyethylene (LDPE)/starch blends and observed that the starch degradation was able to form voids and improve the blends fragmentability at relative low weathering times.

Shujun et al. [15] studied the thermal behavior of LDPE/ starch blends when maleic anhydride (MA) was incorporated to the binary system, which has improved the thermal stability of the samples, suggesting an increasing on the compatibility of the blends.

Ramis et al. [17] evaluated the thermal stability of the PP matrix on blends PP/TPS before and after the burial tests. The kinetic parameters show the effect of degradation in soil on the blends studied. All the materials studied decompose by type R_n and A_n , respectively, in a nitrogen and oxygen atmosphere. The biodegradation was seen to affect the starch but not the PP matrix.

Santoja-Blasco et al. [19] evaluated the biodegradation of blends of HDPE and LDPE with a masterbatch containing starch. The soil burial test leads to changes in the crystalline content of the biodegradable material, which is influenced by the polyolefinic matrix used. Thermogravimetric results reveal that the thermo-oxidative treatment causes a decrease in the activation energy of the thermal decomposition process of both components in the blends, regardless of the type of polyethylene used. Synergetic degradation of these blends is a complex process that is dependent on the polyolefinic matrix used and mainly causes morphological changes.

The aim of this paper is to evaluate the mechanical and thermal properties of pure iPP, plasticized starch (TPS) with biodiesel glycerol (TPS) or commercial glycerol (TPS_{Com}), and their blends (iPP/TPS_{Plas}).

Experimental

Materials

Isotactic Polypropylene (iPP)—Prolen[®], supplied as pellets by Polibrasil S.A. (Suzano, São Paulo, Brazil).

Corn Starch—type Amidex 3001TM, supplied as powder by Corn Product *Brasil Ingredientes Industriais* (Jundiaí, São Paulo, Brazil).

Commercial Glycerol—(COM)—type U.S.P., supplied by Labsynth *Produtos para Laboratório Ltda* (Diadema, São Paulo, Brazil).

Biodiesel Glycerol (BIO)—supplied in crude form by Granol Ltda. (Anápolis, Goiás, Brazil), with density of 1.29 g cm^{-3} and the characteristics described in Table 1.

Plasticization of starch

Starch was mixed to either commercial glycerol or crude biodiesel glycerol in a tilting mixer for 2 min and 1750 rpm in order to obtain different thermoplastic starches: TPS_{Com} and TPS_{Bio} , depending of the plasticizer present, in the proportion starch/plasticizer (wt/wt) 80/20.

Preparation of blends

iPP, TPS_{Com} , TPS_{Bio} and their blends were prepared by drawing process in an LGEX 25/26 extruder with a length/ diameter (L/D) ratio of 25 (LGMT Equipamentos Industriais Ltda., Piracicaba, SP, Brazil). The temperatures used

	Amount/%	
Glycerol	80.0	
Moisture	7.0	
Methanol	0.20	
Sodium chloride	10.0	
Ash	10.0	
	Glycerol Moisture Methanol Sodium chloride Ash	

for zones 1 and 2 were 210 °C and 190 °C, respectively, a 50 rpm of screw speed. The iPP/TPS_{Plas} mass ratios used were 95/5, 90/10, 80/20 and 70/30.

Plates (200 mm × 200 mm × 1.0 mm) were prepared by compression moulding at a temperature of 210 \pm 5 °C for the iPP/TPS_{Plas} blends and 140 \pm 5 °C for TPS_{Com} and TPS_{Bio} under 10 tons of pressure. Type IV specimens (ASTM D-638/99) were stamped with a cutting tool. Tests were performed after 15 days of plate preparation.

Mechanical properties

The tests were done using a model DL 2000 NS 5921 universal testing machine (EMIC Equipamentos e Sistemas de Ensaio Ltda., São José dos Pinhais, PR, Brazil). The control program used was Tesc version 3.01 and the load cell had a capacity of 196.3 N. The specimens were 25 mm long and the speed of stretching was 50 mm min⁻¹.

Thermal analysis

Thermal analysis was done with a differential scanning calorimeter DSC 50 Shimadzu (Tokyo, Japan) in an atmosphere of nitrogen gas (flow rate: 50 mL min⁻¹). The materials (average mass: 5 mg) were heated to 200 °C at a heating rate of 10 °C min⁻¹. All of the DSC experiments were done in duplicate. The crystallinity of PP was determined using a heat of fusion value (ΔHo) of 209 J kg⁻¹ [35] for 100% crystalline PP.

Thermogravimetric analysis (SEM)

Thermal analysis was done with a TG 50 thermal balance (Shimadzu, Tokyo, Japan) in an atmosphere of air (flow rate: 50 mL min⁻¹) at a heating rate of 10 °C/min. The materials (average mass: 5 mg) were heated to 600 °C. All of the TG experiments were done in duplicate.

Results and discussion

Mechanical properties

Figures 1, 2, and 3 show the mechanical behavior for neat iPP, TPS_{Com} and TPS_{Bio} , and iPP/TPS_{Com} and iPP/TPS_{Bio} blends.

Figures 1 and 2 show that incorporating TPS into iPP reduced meaningfully the tensile strength at break and Young's Modulus of the blends, when compared to neat iPP. In general, the higher content of TPS_{Plas} presented on the samples, the less is the tensile strength at break. Some authors have proposed that low values for polyolefins/ starch blends on the mechanical properties are coarse due

Fig. 1 Tensile strength at break for neat materials and their blends

Fig. 2 Young's modulus for neat materials and their blends

Fig. 3 Elongation at break for neat materials and their blends

to a small interaction between the components [9] and the greater sizes of starch particles not dispersed into the polyolefin matrix [8], causing a phase separation, as observed by SEM.

Figure 3 shows that no meaningful alterations were observed in the samples when compared to neat iPP, for elongation at break. Otherwise, it was seen that both TPS

presented indexes of elongation superior to 400% of the value for iPP.

In general, blends plasticized with commercial glycerol have presented a slighter increase on the values for the mechanical properties than the ones containing crude biodiesel glycerol (Figs. 1, 2, and 3), where to effects have taken place: a softening due to the plasticizing of the

Fig. 4 DSC curves for iPP/TPS_{Com}

Fig. 6 TGA curves for iPP/TPS_{Com}

100

Fig. 5 DSC curves for iPP/TPS_{Bio}

Fig. 7 TGA curves for iPP/TPS_{Bio}

Table 2	Melting temperature,	fusion enthalpy and	l cristallinity for iPP/TPS _{Com}	and iPP/TPS _{Bio} blends
---------	----------------------	---------------------	--	-----------------------------------

Composition iPP/TPS _{Plas} (wt/wt)	Melting temperature (°C)		Fusion enthalpy (J g^{-1})		Crystallinity (%)	
	TPS _{Com}	TPS _{Bio}	TPS _{Com}	TPS _{Bio}	TPS _{Com}	TPS _{Bio}
100/0	167.7		-103.8		54.6	
95/5	167.9	167.1	-70.7	-94.4	37.2	49.7
90/10	166.9	166.8	-73.1	-99.5	38.5	52.3
80/20	165.2	168.2	-70.8	-87.9	37.3	46.2
70/30	165.6	166.8	-67.8	-57.8	35.7	30.4

Table 3	Thermogravimetric	behavior to	or 1PP/TPS _{Com}	and 1PP/TPS _{Bio}	blends

Composition iPP/TPS _{Plas} (wt/wt)	On set temperature (°C)		Mid set temperature (°C)		End set temperature (°C)		Mass loss (%)	
	TPS _{Com}	TPS _{Bio}	TPS _{Com}	TPS _{Bio}	TPS _{Com}	TPS _{Bio}	TPS _{Com}	TPS _{Bio}
100/0	272.4		302.3		328.21		95.70	
95/5	273.4	264.5	292.7	299.3	321.0	327.8	98.992	96.007
90/10	274.9	269.4	294.1	313.6	321.6	352.5	98.605	95.589
80/20	297.0	267.1	292.6	302.9	322.2	333.7	97.886	94.987
70/30	265.8	272.3	287.9	307.6	318.3	337.6	95.928	93.745
0/100	270.5	280.4	297.0	311.4	317.5	338.9	93.654	90.706

amorphous phase and stiffening due to a slight antiplasticization effect, as described by Da Róz et al. [36].

Thermal properties

Figures 4 and 5 show the DSC curves for iPP/TPS_{Com} and iPP/TPS_{Bio} blends, respectively, and Table 2 presents the melting temperature, fusion enthalpy and cristallinity for iPP/TPS_{Com} and iPP/TPS_{Bio} blends.

Figures 4 and 5, and Table 2 show that the incorporation of TPS_{Plas} has not meaningfully modified the melting temperature (T_m) of iPP, as described by some authors when studying polyolefin/starch blends [37].

The fusion enthalpy and crystallinity for iPP, as observed in Table 2, were reduced by the incorporation of TPS_{Plas} . The enthalpy was widely affected when TPS_{Com} was present, suggesting that crude biodiesel glycerol has helped to increase phase adhesion ant then increasing the crystalline phase on the samples, as described by Lima and Felisberti [38], and probably due to an influence of polyolefin matrix [39].

Thermogravimetric analysis

Figures 6 and 7, and Table 3 present the thermogravimetric behaviour for iPP/TPS_{Com} and iPP/TPS_{Bio} blends.

It can be seen by Figs. 6 and 7, and Table 3 that iPP and TPS_{Plas} have presented similar degradation temperatures, although the TGA curves for TPS_{Plas} , specially TPS_{Bio} , had shown some alterations during the beginning of the test, suggesting a reduction on the thermal stability for this composition [40].

The incorporation of TPS_{Com} to iPP has not modified the onset temperature for all the blends, but a slight reduction was observed for the samples iPP/TPS_{Bio}, characterizing a more suitable temperature effect on them due to the presence of crude biodiesel glycerol.

It was also observed that the degradation kinetics for the containing iPP/TPS_{Com} was quite different from the iPP/TPS_{Bio} , in which the latter had a slower pace of loss mass than the former, indicating that they were able to present

higher endset temperatures, although the compositions containing biodiesel glycerol had been less thermal stable and also containing some undesired substances originated from the biodiesel fabrication process.

Conclusions

The incorporation of TPS_{Plas} to iPP has generally reduced the mechanical properties of iPP, and no meaningful variations were observed between the plasticizing agents. The DSC curves showed that highest concentrations of TPS_{Bio} increased the melting temperature for iPP, suggesting that TPS_{Bio} performs as a reinforcing source to the blend. By TGA curves, it is observed a reduction on the fusion peak for the blends by increasing the percentage of TPS_{Bio} to the blends, suggesting a reduction on thermal stability of the samples.

Acknowledgements This work was supported by CNPq (Grant Nos. 304577/2004-9 and 471177-2006-7), FAPESP (Grant no. 04/13359-8) and the Universidade São Francisco.

References

- Hamid SH. Handbook of polymer degradation. New York: CRC Press; 2000. p. 421.
- Scott G. Degradable polymers: principles and applications. London: Chapman & Hall; 1995. p. 1.
- Griffin GJL. Chemistry and technology of biodegradable polymers. London: Chapman & Hall; 1994. p. 1.
- Gross RA, Kalra B. Biodegradable polymers for the environment. Science. 2002;297:803–7.
- 5. Shimao M. Biodegradation of plastics. Curr Opin Biotech. 2001;12:242–7.
- Rosa DS, Lopes DR, Calil MR. Thermal properties and enzymatic degradation of blends of poly(*e*-caprolactone) with starches. Polym Test. 2005;24:756–61.
- Nanda PK, Rao KK, Kar RK, Nayak PL. Biodegradable polymers. J Therm Anal Calorim. 2007;89:935–40.
- Huneault MA, Li H. Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polym. 2007;48: 270–80.
- 9. Rosa DS, Guedes CGF, Carvalho CL. Processing and thermal, mechanical and morphological characterization of post-consumer

polyolefins/thermoplastic starch blends. J Mater Sci. 2007;42: 551-7.

- Zheng Y, Yanful EK, Bassi AS. A review of plastic waste biodegradation. Crit Rev Biotech. 2005;25:243–50.
- Rodrigues TC, Tavares MIB, Pita VJRR. Natural weathering evaluation of LDPE-mango starch blends by mechanical properties and high field NMR. Macromol Symp. 2007;245:166–9.
- Pedroso AG, Rosa DS. Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends. Carb Polym. 2004;59:1–9.
- El-Rehim HAA, Hegazy E-SA, Ali AM, Rabie AM. Synergestic effect of combining UV-sunlight-soil burial on the biodegradation rate of LDPE/starch blends. J Photochem Photobiol A Chem. 2004;163:547–56.
- Sailaja RRN, Seetharamu S. Itaconic acid-grafted-LDPE as compatibilizer for LDPE-plasticized Tapioca starch blends. React Func Polym. 2008;68:831.
- Shujun W, Jiugao Y, Jinglin Y. Preparation and characterization of compatible thermoplastic starch/polyethylene blends. Polym Degrad Stab. 2005;87:395–401.
- Gáspár M, Benkõ Z, Dogossy G, Réczey K, Czigány T. Reducing water absorption in compostable starch-based plastics. Polym Degrad Stab. 2005;90:563–9.
- Ramis X, Cadenato A, Salla JM, Morancho JM, Vallés A, Contat L, et al. Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability. Polym Degrad Stab. 2004;86:483–91.
- Jayasekara R, Harding I, Bowater I, Lonergan G. Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation. J Polym Environ. 2005;13:231–51.
- Santonja-Blasco L, Contat-Rodrigo L, Moriana-Torró R, Ribes-Greus A. Thermal and characterization of polyethylene blends with a biodegradable masterbatch subjected to thermo-oxidative treatment and subsequent soil burial test. J App Polym Sci. 2007;106:2218–30.
- Sobhi H, Matthews ME, Grandy B, Masnovi J, Riga AT. Selecting polymers for medical devices based on thermal analytical methods. J Therm Analys Calorim. 2008;93:535–9.
- Corradini E, Morais LC, Demarquette NR, Agnelli JAM, Mattoso LHC. Study of process parameters for starch, gluten and glycerol mixtures. Polym Adv Tech. 2007;18:861–7.
- 22. Ma X, Yu J. The effects of plasticizers containing amide groups on the properties of thermoplastic starch. Starch. 2004;56:545–51.
- Bräuer S, Meister F, Gottlöber R-P, Nechwatal A. Preparation and thermoplastic processing of modified plant proteins. Macromol Mat Eng. 2007;292:176–83.
- Zhang X, Burgar I, Do MD, Lourbakos E. Intermolecular interactions and phase structures of plasticized wheat proteins materials. Biomacromolecules. 2005;6:1661–71.

- Orliac O, Rouilly A, Silvestre F, Rigal L. Effects of various plasticizers on the mechanical properties, water resistance and aging of thermo-moulded films made from sunflower proteins. Ind Crops Prod. 2003;18:91–100.
- Potente H, Heim H-P, Ernst W, Föhrer T. Characterization and modeling of specific enthalpy and heat conductivity of corn grits under consideration of water sorption behavior. Starch. 2006;58: 82–91.
- Hájek M, Skopal F, Machek J. Determination of free glycerol in biodiesel. Eur J Lip Sci Tech. 2006;108:666–9.
- Meher LC, Vidya D, Naik SN. Technical aspects of biodiesel production by transesterification—a review. Renew Sust Ener Rev. 2006;10:248–68.
- 29. Yazdani SS, Gonzalez R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotech. 2007;18:213–9.
- Bournay L, Casanave D, Delfort B, Hillion G, Chodorge JA. New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catal Today. 2005;106:190–2.
- Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng. 2005;100:260–5.
- Haas MJ, McAloon AJ, Yee WC, Foglia TA. A process model to estimate biodiesel production costs. Biores Tech. 2006;97:671–8.
- Kasteren JMN, Nisworo AP. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Res Conserv Recyc. 2007;50: 442–58.
- Barnwal BK, Sharma MP. Prospects of biodiesel production from vegetable oils in India. Renew Sust Ener Rev. 2005;9:363–78.
- Arroyo M, Zitzumbo R, Avalos F. Composites based on PP/EDM blends and aramide short fibres. Morphology/behavior relationship. Polym. 2000;42:6351–9.
- Da Róz AL, Carvalho AJF, Gandini A, Curvelo AAS. The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr Polym. 2006;63:417–24.
- Thakore LM, Desai S, Sarawabe BD, Devi S. Studies on biodegradability, morphology and thermo-mechanical properties of LDPE/modified starch blends. Eur Polym J. 2001;37:151–60.
- Lima JA, Felisberti MI. Poly(ethylene-co-vinyl alcohol) and poly(methyl methacrylate) blends: phase behavior and morphology. Eur Polym J. 2008;44:1140–8.
- Ramkumar DHS, Bhattacharya M. Effect of crystallinity on the mechanical properties of starch/synthetic polymer blends. J Mater Sci. 1997;32:2565–72.
- Wang S, Yu J, Yu J. Compatible thermoplastic starch/polyethylene blends by one-step reactive extrusion. Polym Int. 2004;54: 279–85.